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Abstract-Momentum and heat transfer in power-law-fluid flow over arbitrarily shaped two-dimensional 
or axisymmetric bodies are examined theoretically. The Merk type of series expansion technique is used 
for the analysis. The solutions to the governing equations are obtained as universal functions which are 
independent of the geometry of the problem. With the universal functions obtained, the examples for a 
vertical flat plate, a horizontal cylinder, a sphere and a vertical cone are given and their results are also 

compared with the existing results in the literature 

1. INTRODUCTION 

HEAT TRANSFER in non-Newtonian fluids from external 
surfaces of bodies of various geometries has been the 
subject of numerous investigations during the past 
decades. The interest in this subject still continues. 

Acrivos [l] was apparently the first to investigate 
the natural convection behavior of non-Newtonian 
fluid flow from a body with an isothermal surface. 
Since then quite a number of works have been suc- 
cessfully carried out [2-121. An excellent review on 
this subject of convective heat transfer in non- 
Newtonian fluids has recently been made by Shenoy 
and Mashelkar [ 131. 

Most of the investigations on free convection in 
non-Newtonian fluids are concerned with a simplified 
model neglecting the convective term in the governing 
momentum equation under the assumption of very 
large Prandtl number and with simple geometries such 
as a flat plate or a horizontal cylinder. 

In this analysis, we propose an exact solution for 
which the convective term is retained in the governing 
momentum equation, and is valid for general two- 
dimensional or axisymmetric bodies. Although, in 
general, the Prandtl number for a non-Newtonian 
fluid is large, the effect of the convective term on the 
heat transfer rate is investigated here. 

2. PROBLEM STATEMENT AND 
MATHEMATICAL FORMULATION 

Consideration is given to the steady, natural con- 
vective power-law fluid in latninar boundary layer 
flow over two-dimensional or axisymmetric bodies of 
uniform surface temperature T, situated in an infinite 
ambient fluid of undisturbed temperature T,. The 
flow situation is illustrated in Fig. 1. The coordinate 
P is the distance measured along the surface from the 

lower stagnation point when the surface is heated, or 
from the upper stagnation point when the surface is 
cooled ; j is the distance along the outer normal to the 
body. The corresponding velocity components are zi 
and 6. For rotationally symmetric bodies, f, which is 
a function of 2 only, is the radial distance measured 
from the axis of symmetry to the surface of the body. 

Furthermore, constant properties are postulated, 
except for the density in the buoyancy term. As usual, 
the frictional dissipation term in the energy equation 
is neglected. 

(a) T,>T 

Two-dimonaional Body 

lb) Tw<T, 

Twocdimrnslonol Body 

Axisymmrhic Body 

Axisymmotric Body 

FIG. 1. Physical model and coordinate system. 
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NOMENCLATURE 

a, acceleration vector in f-direction F coordinate measured along the outer 

C, specific heat normal to the body. 

; 

energy factor, equation (22) 
dimensionless stream function, 
equation (13) 

fl>“f2rf3 universal stream functions, Greek symbols 
equation (23) u angle between the local gravitational 

GR generalized Grashof number, acceleration vector and the outward 
equation (6) normal to the body contour 

G, Grashof number for Newtonian fluids B coefficient of thermal expansion 
K consistency index Y term defined in equation ( 18) 
k thermal conductivity ? transformed dimensionless coordinate, 
L reference length equation (14) 
II flow behavior index e dimensionless temperature function, 
NU Nusselt number equation (6) 

PR generalized Prandtl number, equation (6) O,, 02, e, universal temperature function, 
? coordinate measured in the radial equation (24) 

direction A generalized wedge parameter, 

TW surface temperature equation (17) 

TX temperature outside the boundary layer r transformed dimensionless coordinate, 
u velocity function, equation (12) equation (14) 
u velocity component in f-direction P fluid density 
v velocity component in j-direction L shear stress at the wall 
x streamwise coordinate measured along term defined in equation (5) 

the surface stream function, equation (13). 

The governing boundary layer equations are then where 4 is a non-dimensional function of 2, and a is 

h(E)+ &-fi) = 0 
a positive constant having the dimensions of accel- 

(1) eration. Consequently, in the gravitational field, if 
T, < T,, a, = g sin (a), tl being the angle between the 

cg+z?$= -ax/l(T-Tm)+~$~$~$~‘] 
local gravitational acceleration vector and the out- 
ward normal to the body contour. In writing equations 
(2) and (3), it has been assumed that /?I(Tw- TJ << 1 

(2) so that the viscous dissipation is ignored. 

8T c3T k d2T 
By introducing the following dimensionless quan- 

u~+z?~=---~. 
dX ay PC, ay 

(3) tities : 

The boundary conditions associated with the problem 
are 

zg?,O) = 6(X,0) = 0, T&O) = T, 

U(X, co) -+ 0, T(Z, co) + T, (4) 

where /?, k, and T are the thermal expansion 
coefficient, thermal conductivity, and temperature of 
the fluid, respectively. The quantities K and n are 
empirical constants of the power-law model, and a, 
is the component of the acceleration vector in the 
direction of increasing X. No distinction is made as 
to the origin of the field force ; e.g. gravitational or 
centrifugal. For the convenience of later discussion, 
we write 

- 
a, = ra$(X) 

for T, > T,,, 

+ for T, < T, (5) 

x = g/L, y = f Gjliz(“+ I), 
T-T, 

r = f/L, e = ~ 
Tw-Tm 

p 
R 

= PC, K 2’(n+‘)L(I-“),(l+“) 0 k P 

x [Lpal T, _ T, I] %a+ ‘)Mn+ ‘) 

cG;/2(“+ 1) 

’ = ,.@B4Vw - TAD 

(6) 

where L is a characteristic length, PR the generalized 
Prandtl number and G, the generalized Grashof num- 
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ber, the governing equations become 

ae u-+vC!!=p,lE 
ax ay aY* 

(9) 

with boundary conditions 

24(x,0) = 0(x,0) = 0, ecx,o) = I 

4x, co) + 0, ecx, 00) + 0. (10) 

If one compares equations (7), (8) and the associated 
boundary conditions with those for forced flow (see, 
e.g. ref. [14]), one recognizes their close resemblance. 
This leads to proposing a hypothetical or ‘equivalent’ 
outer stream dimensionless velocity function, V(x), in 
such a way that 

(11) 

so that 

u= (,p,,,,p** (12) 

The continuity equation (7) is automatically sat- 
isfied when a dimensionless stream function, $, is 
introduced, i.e. 

1c/ = ](n + l,t-- “(“+ “fkt, tl) (13) 

and defined by ru = a$/ay, IV = -al(lpx. 

The x, y coordinate system is transformed into a 
new dimensionless coordinate system by adopting 
new dimensionless variables 

tj = Ury[(n+ l)t]-‘/(n+‘) 

where r is set to 1 for the two-dimensional case. From 
the above transformations, one finds 

u = uj- (15) 

nr”P-’ 
v = - [@+ 1)<]“““‘1) 

1 

af 
x f+(n+l)$+(A+Y-l)tlf 

1 
(16) 

where the prime denotes differentiation with respect 
to rl. 

The ‘generalized wedge parameter’ A and y are 
defined respectively by 

AJn+WdU (n+ 1hPr 
--=np+yl+l u dt 

(17) 

y = (n+l)6 dr -_ 
r G’ 

(18) 

The quantity A is a function of n and 5, i.e. x, and 
can be calculated explicitly if n and U are given. For 
Newtonian fluids, n = 1, and A will reduce to the 
wedge parameter defined by Lin and Chao [ 151. 

The boundary layer equations with associated 
boundary conditions may be reduced to the following 
system : 

If”l”-‘f”+f”f+*(e-f’*) = tn+ l)r$$$ , 
(19) 

a(e,f) -$Y+fF = (?r+1)5a(5 
R 9 

(20) 

f(5,O) = f’(5,O) = 0, W&O) = 1 

f’(5, a> --t 0, e(5,4 + 0 (21) 

where a(f?,j)/a(& q) and a(f’,f)/a([, q) denote the 
Jacobians. 

The quantity E defined by 

n* o-I)/@+ 1) 

E= w [ 1 (22) 

is a special parameter only for the non-Newtonian 
fluid, and it reduces to 1 for a Newtonian fluid. Like 
A, it depends upon the behavior index n, the body 
contour x, U, and e!~. 

When n = 1, E = 1, the equation pair, equations 
(19) and (20), reduces to that given by Lin and Chao 

[151. 
The solution to equations (19) and (20) may be 

written in Merk type series form as modified by Kim 
et al. [14] as 

f(A,rl,n) = h(A,~,n)+(n+l)r~f,(A,a,n) 

and 

e(A,~,n) = e,(A,rl,n)+(n+l)C~e,(A,tl,n) 

2 2d2A 
+(n+l) 5 dtze2(h4 

+[(.+1)5~1iS,(A,~,~)+... (24) 

Upon substituting both f and f? into equations (19) 
and (20), and collecting terms free of dA/d& and then 
terms common to, (n + l)< dA/d& (n+ l)‘[‘d*A/ 
dc*, . . . , etc., a sequence of ordinary differential 
equations is obtained. The first pair in the sequence 

(fo9 0,) is 

IS’~I”-‘f~+fof’~+A(8o-((fb)*) = 0 (25) 
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and 

&Y;+f& = 0 (26) 
R 

with boundary conditions 

fo(A,O) = fi(A,O) = 0, &(A,O) = 1 

&(A, co) + 0, &(A, co) -+ 0. (27) 

The remaining differential equations with their associ- 
ated boundary conditions are 

V-Y”-‘fY’+fof’;+f’X +A(B, -2&S;) 

a(fbtfo) 
+(n+ 1) (f’Z -fif,) = a(l\ 

7 

;B’; +u8l +f,eb) 
R 

= (n+l)(/b&Bbfi)+# 
9 

If’~l”-‘f;‘+fof;+fgf*+(fgf, -fb_rl) 

-A(e,-2fbf;)-2(n+l)(f’~S,-fbf;) = 0 

%e;+(s;fo+ebf2)-(fbs,-e.,~,) 
R 

+ wdd 
~ = m+ 1) (f&4 -@of,> 
a(& rt) 

f;(A,O) = f;(A,O) = 6,(A,O) = 0 

fl(A> ~0) -+ 0, e,(A, co) + 0 (i = 1,2). 

(28) 

(2% 

(30) 

(31) 

(32) 

In obtaining equations (25)-(31) the term If”]“-’ 
has been approximated by ]f’J”- ‘. This approxi- 
mation will be verified later by the fact that the first 
term of series (23) dominates the whole series. 

All equation sets f; and Bi (i = 0, 1,2) can be 
regarded as ordinary differential equations. It should 
be noted that f; and Bi are universal in the sense that, 
for a given set of A, E, P,, and n, they may be 
evaluated once and for all. In fact the quantity E/nP, 

appearing in equation (3 1) may be treated as a single 
parameter, but for the convenience of comparison and 
discussion, the parameters E, PR, and n are treated 
separately. These universal functions have been evalu- 
ated numerically by using the fourth-order Runge- 
Kutta method, and are tabulated for a range of 
Prandtl numbers which are generally adequate for 
technological applications [16]. Parts of the tabulated 
functions are reproduced in Tables l-3. Although 
no detailed error analysis has been attempted, the 
values presented are believed to be accurate to within 
four to six significant digits. The best way to check 
the accuracy is to compare them with published data. 

3. COMPARISON AND DISCUSSION 

To demonstrate the capabilities of the present 
method of analysis, the local heat transfer for iso- 
thermal objects of several geometrical configurations 
have been examined. A few selected instances are also 
presented. The generalized shear stress at the wall for 
power-law fluids can be written in a form which is 

Table 1. Wall derivatives of universal functions (n = 0.50, P, = 100) 

E A f'; eb f;x 10 0; x 10 f’;x 10 e;x 102 

0.20 
0.40 
0.60 

0.20 O.*O 
1.00 
1.20 
1.40 
1.60 

0.20 
0.40 
0.60 

0.60 “*’ 
1.00 
1.20 
1.40 
1.60 

0.20 
0.40 
0.60 

1.00 O.*O 
1.00 
1.20 
1.40 
1.60 

0.00858303 -0.59876389 -0.01112 - 1.99150 0.0247 4.5845 
0.01986454 -0.79381729 -0.01287 -1.31116 0.0285 3.0169 
0.03241876 -0.93553297 -0.01400 - 1.02532 0.0310 2.3584 
0.04585670 - 1.05068080 -0.01480 -0.85766 0.0328 1.9709 
0.05997438 - 1.14923810 -0.01573 -0.75421 0.0348 1.7380 
0.07464249 - 1.23619480 -0.01603 -0.67146 0.0354 1.5428 
0.08977202 -1.31447630 -0.01672 -0.61622 0.0370 1.4195 
0.10529784 - 1.38596880 -0.01697 -0.56218 0.0375 1.2909 

0.01328172 -0.47977373 -0.01899 - 1.70044 0.0419 4.0164 
0.03069350 -0.63546643 -0.02042 - 1.12216 0.0451 2.4106 
0.04996748 -0.74773425 -0.02184 -0.80751 0.0475 1.8707 
0.07052022 -0.83856551 - 0.02296 -0.67287 0.0499 1.5553 
0.09201670 -0.91587252 -0.02395 -0.58701 0.0520 1.3556 
0.11426286 -0.98375792 -0.02430 -0.51807 0.0538 1.1901 
0.13712662 - 1 II4461870 -0.02553 - 0.47997 0.0555 1.1087 
0.16051752 -1.10001940 -0.02588 -0.43811 0.0564 1.0070 

0.01621356 -0.43182252 
0.03742822 -0.57156355 
0.06087366 -0.67213931 
0.08578700 -0.75308825 
0.11178444 -0.82180064 
0.13863422 -0.88200235 
0.16618309 -0.93588037 
0.19432735 -0.98485785 

-0.02139 - 1.41749 0.0474 3.2610 
- 0.02479 -0.92431 0.0552 2.1146 
-0.02686 -0.71796 0.0608 1.6236 
-0.02814 -0.59744 0.0639 1.3436 
- 0.02893 -0.51622 0.0654 1.1594 
- 0.02969 -0.46052 0.0666 1.0370 
- 0.03027 -0.41750 0.0672 0.9429 
- 0.03060 -0.38587 0.0672 0.8760 
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Table 2. Wall derivatives of universal functions (n = 0.70, PR = 100) 

E A 

0.20 
0.40 
0.60 

0.20 y.;; 

1:20 
1.40 
1.60 

0.20 
0.40 
0.60 

0.60 “*’ 
1.00 
1.20 
1.40 
1.60 

0.20 
0.40 
0.60 

1.00 O.*O 
1.00 
1.20 
1.40 
1.60 

eb fix 10 0; x 10 f$xlO e; x lo2 

0.02596181 - 1.0371621fI -0.03541 -2.15682 0.0718 4.6319 
0.05075480 - 1.29669380 -0.03454 - 1.34075 0.0703 2.8662 
0.07503995 - 1.47653810 -0.03380 - 1.01710 0.0689 2.1675 
0.09896967 - 1.61838360 -0.03325 -0.83457 0.0679 1.7729 
0.12262109 - 1.73724780 -0.03259 - 0.72006 0.0663 1.5314 
0.14604213 - 1.84046420 -0.03236 -0.63284 0.0658 1.3442 
0.16926565 - 1.93222570 -0.03178 -0.57179 0.0646 1.2141 
0.19231537 -2.01517690 -0.03161 -0.52093 0.0644 1.1034 

0.03670394 -0.80486003 -0.05143 - 1.63252 0.1012 3.5686 
0.07159650 - 1 AI0476550 -0.04968 -1.10551 0.1063 2.0851 
0.10566498 - 1.14274700 -0.04815 -0.77206 0.1013 1.6012 
0.13914935 - 1.25124710 -0.04710 -0.63509 0.0973 1.3314 
0.17217232 - 1.34193710 -0.04630 - 0.54640 0.0945 1.1545 
0.20480901 - 1.42050410 -0.04539 - 0.48093 0.0920 1.0173 
0.23711152 - 1.49020030 -0.04444 -0.43326 0.0895 0.9186 
0.26911686 - 1.55307280 -0.04401 -0.39602 0.0884 0.8408 

0.04304010 -0.71447656 -0.06138 - 1.42527 0.1195 3.1339 
0.08383433 -0.89105783 -0.05893 -0.88789 0.1161 1.9279 
0.12358921 - 1.01266540 -0.05701 -0.67378 0.1128 1.4537 
0.16260109 -1.10811110 -0.05542 -0.55460 0.1096 1.1934 
0.20102090 - 1.18775180 -0.05413 -0.47450 0.1074 1.0152 
0.23894219 - 1.25663690 -0.05310 -0.42023 0.1051 1.8992 
0.27643028 - 1.31765430 -0.05218 -0.37802 0.1034 0.8071 
0.31353255 - 1.37262360 -0.05138 -0.34576 0.1016 0.7384 

analogous to that for Newtonian fluids as where 

f”(A,O,n) = f;(A,O,n)+(n+1)5~~(A.O.n) 

2 2d2A 

(U'r)" 

+(n+l) 5 -&‘;(A,O,n)+ ... (34) 

= [(n+ 1,@(n+ ‘) If”(A, 0, W (33) 
In a similar way, the local heat flux is defined in terms 

Table 3. Wall derivatives of universal functions (PR = 100) 

n E A f’i eb f;x 10 0; x 10 fix 10 e; x lo2 

0.34326 1.49619 0.12028242 - 1.20918220 -0.02073 -0.51934 0.0452 1.1193 
0.54292 1.48473 0.14186399 - 1.09347250 -0.02399 -0.46331 0.0519 1.0635 
0.84866 1.43858 0.16167984 -0.98116448 -0.02871 -0.42873 0.0617 0.9885 

0.50 1.08385 1.36034 0.16588548 -0.91069683 -0.03098 -0.41458 0.0682 0.9544 
1.40056 1.09039 0.14265973 -0.79375038 -0.03332 -0.44851 0.0706 1.0391 
1.53577 0.66698 0.08175254 -0.64203109 -0.03223 -0.60260 0.0875 1.4119 
1.53944 0.36932 0.04052499 -0.50872100 -0.02970 -0.87864 0.0610 2.0680 

0.51941 
0.68144 

1.24342 0.18922056 - 1.42168320 -0.03844 -0.48537 0.0777 1.0326 
1.23487 0.2040115 1 - 1.33074800 - 0.04489 -0.45691 0.093 1 0.9694 
1.13409 0.21498401 - 1.17772450 -0.05250 -0.44830 0.1058 0.9807 
1.05459 0.20475480 - 1.12410160 -0.05442 - 0.45684 0.1104 0.9924 
0.93737 0.18581948 - 1.06790140 -0.05071 -0.48662 0.0985 1.0624 
0.78365 0.15765130 - 1.00040080 -0.05531 -0.54067 0.1112 1.1726 
0.58524 0.11898888 -0.90773786 -0.05763 -0.66099 0.1182 1.4431 
0.33007 0.06768436 -0.75454546 -0.05735 -0.97160 0.1156 2.1140 

1.02496 

0.67 1.12215 
1.18910 
1.23052 
1.24901 
1.24621 

0.72872 
0.82789 
0.93718 

0.83 
1.00242 
1.04546 
1.07356 
1.08998 
1.09641 

1.10010 0.25762999 -0.15597539 -0.00612 -0.04477 0.0115 0.0916 
1.09320 0.26516929 -0.15079558 -0.00646 -0.04347 0.0221 0.0892 
1.06509 0.26812893 -0.14511447 -0.00664 -0.04267 0.0124 0.0875 
1.01663 0.26246141 -0.14085415 -0.00710 -0.04345 0.0132 0.0910 
0.94520 0.24958995 -0.13659754 -0.00697 -0.04521 0.0128 0.0940 
0.84667 0.22904496 -0.13162523 -0.00709 -0.04922 0.0132 0.1015 
0.71483 0.19930033 -0.12511812 -0.00776 -0.05402 0.0146 0.1114 
0.54041 0.15747351 -0.11557619 -0.00834 -0.06568 0.0153 0.1394 
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Table 4. Comparison or generalized local Nusselt number for vertical flat plate (n = 0.5) 

N,, /G;/(%+ l,,@h+ 1) 

X Acrivos [l]t Shenoy and Ullkecht [6]t Chen [3]t Present (P, = 100) 

0.0033 1.5802 1.4943 1 1.4273 1.4428 
0.0703 0.8571 0.81056 0.7742 0.7787 
0.2100 0.6886 0.65120 0.6220 0.6243 
0.5290 0.5725 0.5413 0.5171 0.5179 
0.8009 0.5268 0.4982 0.4759 0.4761 
1.1796 0.4875 0.4611 0.4404 0.4404 
1.6972 0.4533 0.4287 0.4095 0.4091 
2.3915 0.4233 0.4003 0.3824 0.3816 
3.2979 0.3967 0.3754 0.3583 0.3575 
4.5000 0.3731 0.3528 0.3370 0.3358 

t Data are for Pr >> 1. 

of the generalized local Nusselt number 

NUX 
~=I(n+l~,,~~+,,[-e’(A,O,n)l (35) 

where 

W(A,O,n) = Bb(A,O,n)+(n+l)r~B;(A,O,n) 

2 2d2A +(n+l) 5 &%(A,O,n)+ ... (36) 

Once n and the geometry of the object are given, all 
the necessary information can be obtained. The shear 
stress at the wall and the local heat transfer can be 
readily obtained by using the tabulated data of the 
universal functions. 

3.1. Natural convection over a verticalBat plate 
Considerable attention has been given to the case 

of non-Newtonian natural convection over a vertical 
flat plate. The results for the local heat transfer 
coefficient for n = 0.5 are shown in Table 4, along with 
the data obtained by using the equation presented by 
Acrivos [l], Shenoy and Ulbrecht [6], and Chen and 
Wollersheim [8]. 

0 
0.4 0.8 ‘.2 I.6 

7’ 
2.0 2.4 28 

FIG. 2. Variation of 0 with q’ for 1000 ppm CMC (n = 0.927) 
for a vertical flat plate (q’ is defined by equation (3) [6]). 

The local Nusselt number computed by the present 
method is about 10% below that of Acrivos. Since 
Reilly et al. [2] reported that the predictions of Acrivos 
were about S-10% higher than the experimental 
findings, the behavior of the present results is close to 
the observation of Reilly et al. 

A comparison of the dimensionless temperature dis- 
‘tribution of a flat plate predicted by the present analy- 
sis and the experimental findings of Shenoy and 
Ulbrecht [6] is given in Fig. 2. The agreement is con- 
sidered to be very good. 

Table 5 provides a comparison of average Nusselt 
numbers (with P, = 100) obtained by the present 
method, the exact solution of Acrivos, the exact solu- 
tion of Chen [3], the approximate solution of Tien, 
and the approximate solution of Shenoy and Ulbrecht 
[6]. As one can see for n = 1, all the values are very 
close. For n = 0.5, our value is exactly the same as 
that of Chen’s [ 111, but lower than the value obtained 
by others. 

3.2. Natural convection over a horizontal cylinder 
Consider a long horizontal circular cylinder placed 

in a power-law fluid. For such a case, the radius of 
the cylinder is chosen for the reference length L and 
4 = sin (x). It follows that 

u = [2( 1 -cos (x))] I’? (37) 

n[2(1 -cos (x))]‘*“~ u/2 dx (38) 

(n+ 1) sin (x)l 

The relations among the angle measured from the 
forward stagnation point and E, r, (n-t l)[ dA/d& 
and (n+ 1)212d2A/d12 for n = 0.5, 0.67, and 0.83 are 
plotted in Figs. 3 and 4. Using these figures, the shear 
stress at the wall and the generalized local Nusselt 
number can be computed. 

The data obtained using the present method was 
compared with the experimental data of Gentry and 
Wollersheim [7]. The generalized local Nusselt num- 
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Table 5. Comparison of average Nusselt number for a flat plate 

Nu/G;/‘2’“+ I,,Pj’3”+ 1) 
n Present (PR = 100) Chen [3]t Acrivos [l]t Shenoy and Mashelkar [5]t 

0.5 0.569 0.569 0.63 0.5957 
1.0 0.6723 0.657 0.67 0.6775 

t Data are valid for Pr >> 1. 

Tien [4]t 

0.6098 
0.6838 

bers of five different behavior indices ranging from 
0.67 to 1.0 including the Newtonian fluid (i.e. water), 
are compared. Figure 5 shows the result for water. 
Figures 6 and 7 are the experimental data of the local 
free convection results obtained for the 0.053 and 
0.055% Carbopol solutions, which agree excellently 
with the present work. However, the experimental 
results for the last two solutions, shown in Figs. 8 and 
9, are 9-12% higher than that calculated by both the 
integral-similar method and the present method. No 
conclusive reasons have been found so far to explain 
these discrepancies. The influence to the local heat 
transfer by the flow index decreases with the decrease 
of flow index. This phenomena is shown in Fig. 10. 

Once the information for x, E, A, l, (n+ l)t dA/dc, 
and (n+ 1)2~2d2A/d~2 is given, details of the tem- 
perature and velocity distribution in the boundary 
layer can be calculated in a straightforward manner from 
equations (23) and (24) using either the tabulated 
universal functions or the computer programs 
developed in this study. 

3.3. Natural convection from axisymmetric bodies 
The first case considered for the axisymmetric body 

is the natural convection from a sphere. If the charac- 
teristic length is taken equal to the radius of the sphere 
then 

r=sinx and 4=sinx. (40) 

______“_0,5 

18- - -n=O.67 / 
-n=0.83 

FIG. 3. Variation of A, 5 and E along the surface of a 
horizontal cylinder. 

The local Nusselt number can be readily obtained as 

Nu, = [2( 1 - cos x)] ‘I* * sin x 

*[-Q’(A,0,n)]~[(n+l)~]-“(n+‘).G~’2(”+’). (41) 

Figure 11 shows Nusselt numbers calculated by the 
present series solution with P, = 5500 as well as by 
that of Acrivos [I] for n = 0.927. 

The effect of the convective term on the heat transfer 
rate can be observed by the increase of P,. As 
P, = 500, NM predicted by the present method is 
around 4.4% lower than that of Acrivos [ 11. 

For the second case, a vertical cone with its apex 
points downward. Under this condition, 4 = cosy 
and r = x. y is the half angle of the apex and its 
characteristic length L is set equal to the length of 
the cone. The following expressions can be easily 
obtained : 

n+l 
I\=--- 

4n+3 
(42) 

t= ~(2cosg)(*“-“:2(siny)“+ 1~(4~+3)/*. (43) 

The local Nusselt number is given by 

4n+ 3 
Nu, = [-Q’(A,O,n)] ____ 

[ 1 
r/W+ 1) 

20 + 1) 

x (2cosy)- (n-2)/2@+ 1,X-"'*'"+ 1). G;/2'"+ 1) 

(49 

The theoretical predictions on laminar natural con- 
vection heat transfer from a vertical cone to a power- 
law fluid are those of Acrivos [I] and Shenoy [lo]. 

0 20 40 60 80 IO0 120 140 160 
,*nol.Inapmo.-rod ~wwar*eqmflm PanIl 

FIG. 4. Variation of (n+ l)rdA/dr and (n+ 1)2~2d2A/d~2 
along the surface of a horizontal cylinder. 
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/-PRESENT WORK CF+iOO) 

SIMILAR AND INTEGRAL 3Ol.S. 

0 Runl AT*20°F 
!3 Run2 AT=P*F 
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0 Run 4 AT* 22.F 

0 Run6 AT*2#F 
h Run7 AT=3fF 

20 40 60 80 100 120 I40 160 
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FIG. 5. Comparison of the present work and Gentry and Wollersheim’s experimental data [7] (n = 1 .O). 

/-PRESENT WORK (P,=lOO) 

0 I I L 1 L I I 

0 20 40 60 80 100 I20 

AfiQb@, (drgrrrrl 

FIG. 6. Comparison of the present work and Gentry and Wo~lers~eim’s experimental data [7] (n = 0.93). 

0 1 I t I I 1 1 1 
0 40 A"gl.%.,:dOe$nrw 120 I60 

FIG. 7. Comparison of the present work and Gentry and 
Wollersheim’s experimental data [7] (n = 0.83). 

FIG. 8. Comparison of the present work and Gentry and 
Wollersheim’s experimental data [7] (n = 0.77). 
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Angle*, (degrees) 

FIG. 9. Comparison of the present work and Gentry and 
Wollersheim’s experimental data [7] (n = 0.67). 

0.61 

FIG. 10. Effect of flow behavior index on local heat transfer 
rate over a horizontal cylinder. 

01 

OO 40 
bn~.,~degre~P 

160 

FIG. 11. The effect of Pn on local heat transfer rate around 
the surface of a sphere (n = 0.927). 

Table 6. Comparison of local Nusselt number for a vertical 
cone (y = 30”, n = 0.927, PR = 500) 

&&/(2(“+ I))pdR/(3n+ 1) 

x Acrivos [l]t Shenoy [lo]? Present (PR = 500) 

0.06 1.2275 1.1923 1.1699 
0.10 1.0830 1.0519 1.0321 
0.30 0.8273 0.8036 0.7883 
0.50 0.7299 0.7090 0.6955 
0.70 0.6721 0.6528 0.6404 
1.00 0.6158 0.5982 0.5867 
1.50 0.5575 0.5415 0.5312 
2.00 0.5196 0.5047 0.4950 

t Data are valid for large P,. 

Nusselt numbers calculated by the present method 
along with those from Acrivos’ and Shenoy’s methods 
are given in Table 6 (for n = 0.927, P, = 500). 

It is worthy to note that the present work as well 
as that of Acrivos does not include the curvature 
effect. Our results agree with those of Acrivos [I] and 
Shenoy [lo] to within 5%. 

4. CONCLUSION 

The momentum and heat transfer phenomena 
occurring in laminar natural convection to non-New- 
tonian power-law fluids has been theoretically exam- 
ined. The Merk-Meksyn series expansion method and 
the generalized coordinate transformation can trans- 
form the partial differential momentum and energy 
equations into two sets of infinite-sequence type ordi- 
nary differential equations, respectively. The solutions 
to these sets of differential equations can be obtained 
as universal functions which are tabulated once and 
for all for geometries. The technique presented in this 
analysis provides a general, accurate, and relatively 
simple method to analyze the transport phenomena 
in the laminar boundary layer of power-law fluids. In 
application, the present results are in good agreement 
with those obtained from previous experiments or 
other theoretical work. With the present analysis, the 
validity of the analysis for large P, is re-examined. The 
authors also believe that the results of the velocity and 
temperature fields obtained by using this analysis can 
significantly improve the prediction of mass transfer 
in power-law fluids with heterogeneous surface reac- 
tion. 
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CONVECTION NATURELLE DE FLUIDES A LOI-PUISSANCE AUTOUR DE CORPS 
BIDIMENSIONNELS OU AXISYMETRIQUE DE CONTOUR QUELCONQUE 

R&sum&On etudie thtoriquement le transfert de quantite de mouvement et de chaleur dans un fluide a 
loi-puissance en &coulement sur des corps de forme quelconque bidimensionnelle ou axisymetrique. La 
technique de type Merk de developpement en s&e est utilisee pour l’analyse. La solution des equations 
est obtenue comme des fonctions universelles qui sont independantes de la geometric du probleme. Avec 
les fonctions universelles obtenues, on traite les cas dune plaque plane verticale, dun cylindre horizontal, 

d’une sphkre et d’un c8ne vertical et les rkltats sont cornparks aux rCsultats dkjg connus. 

NATURLICHE KONVEKTION BE1 FLUIDEN MIT NICHTLINEARER 
SCHUBSPANNUNG AN ZWEIDIMENSIONALEN ODER 

ACHSENSYMMETRISCHEN KC)RPERN BELIEBIGER GESTALT 

Zusammenfaseung-Der Impuls- und Warmetransport in Fluiden mit nichtlinearem Schub- 
spannungsansatz an beliebig geformten zweidimensionalen oder achsensymmetrischen Kiirpem wurde 
theoretisch untersucht. Die Merk’sche Reihenentwicklung wurde fur die Untersuchung verwendet. Die 
L&sung wurde in allgemeiner Form unabhgngig von der Geometric ermittelt. Mit diesen allgemein anwend- 
baren Gleichungen wurden die senkrechte ebene Platte, der waagerechte Zylinder, die Kugel und ein 
senkrechter Kegel als Beispiele berechnet und mit den vorhandenen Ergebnissen in der Literatur verglichen. 

ECTECTBEHHAII KOHBEKLIki5I CTETIEHHbIX XCWOCTEH B6JIH3H ABYMEPHMX 
MJIH OCECHMMETPM~HbIX TEJI lTPOH3BOJIbHOfi @OPMbI 

~kicnonbaya rexmmy Mepra paanoncemia B panbr, nponenen reopermrec~ a~am3 nepe- 
coca mmynbca A Terma B creneHHofi -ocrB, oKpyzuome* AasyMepHbre HJIH ocecsib5bfeTpHuabre Tena 

npOIi3BOJIbHOfi I#lOpMl& nOJIyqeIi0 peUIeHue OCH0BHbl.K YpaBHeHti B BEVIe yHlieepCanbHbIx &HKUE%, 

KOTOpble He 3aBECWr OT XXOMeTpBE 3aEPtH. C UOMOnWO 3THx &HKlWfi IiCCJleLIOBBHa eCTeCTBeHHBIl 

KOHaeK~KOT~~~bHO~~~O~~a~EHbl,rOpE3O~~bHOrO IWIEHJlpa, mapa E BepTHKaJIbHOrO 

~0Hya. lIpoBeneH0 cpaeHeme nonyseruraot pe3ynbTaTon c OI’Iy6JIHKOBaHWIMR B nrrreparype ~WHH~~MH. 


